
Host your Application in the Azure
Cloud with XAMPP and Bitnami

Vikram Vaswani

v1.0

Table of Contents
Introduction .. 1
What You Will Need ... 1
Step 1: Register with Microsoft Azure .. 2
Step 2: Register with Bitnami ... 3
Step 3: Connect your Azure and Bitnami Accounts ... 4
Step 4: Provision an Azure Cloud Server... 6
Step 5: Test PHP and MariaDB ... 8
Step 6: Configure Server Security.. 12
Step 7: Deploy the XAMPP Application to the Cloud Server ... 17
Understand Azure’s Dashboard and Monitoring Tools .. 22
Improve Application Performance .. 25
Useful Links.. 26
About the author... 26

Introduction
If you’re a PHP developer building a public-facing Web application, there are a number of good reasons why
the cloud should be on your radar. It’s highly scalable, allowing you to quickly scale up if you application turns
out to be a hit. It’s cost-efficient, because you only pay for the resources - bandwidth, CPU cycles, memory -
you use. And it’s secure, because cloud providers have invested a great deal of time and thought into ring-
fencing applications and user data.

However, if you’re new to the cloud or do most of your development locally, getting your PHP application from
your local XAMPP box to the cloud can be a bit challenging. That’s where this tutorial comes in. Over the next
few pages, I’ll walk you, step by step, through the process of deploying a PHP/MySQL application running on
your local XAMPP server, to a cloud server running LAMP packaged by Bitnami. Keep reading!

What You Will Need
Before we begin, a few quick assumptions. This tutorial assumes that you have a XAMPP installation with a
working PHP/MariaDB application. It also assumes that you’re familiar with the MariaDB command-line client
and that you have a working knowledge of transferring files between servers using FTP.

If you don’t have a custom PHP/MySQL application at hand, use the example application included with
this tutorial: it’s a simple to-do list, created with Twitter Bootstrap and PHP. You can download it from
here.

Now, if you’re new to the cloud, you might be wondering what Azure and Bitnami are. Very briefly, Azure is
Microsoft’s cloud platform, which allows you to easily create Windows (and Linux) virtual servers in the cloud.
Bitnami provides pre-packaged server images for these cloud servers, so that you can become productive with
them the moment they come online. In short, Azure provides the cloud infrastructure, and Bitnami provides the
server images and software.

For this tutorial, I’ll be using LAMP packaged by Bitnami, which is Linux-based and bundles PHP, MariaDB and
Apache, together with key applications and components like phpMyAdmin, SQLite, Memcache, OpenSSL, APC
and cURL. LAMP packaged by Bitnami also includes a number of common PHP frameworks, including the
Zend Framework, Symfony, CodeIgniter, CakePHP, Smarty and Laravel.

To deploy your application to the Azure cloud with LAMP packaged by Bitnami, here are the steps you’ll follow:

• Register with Microsoft Azure

• Register with Bitnami

• Connect your Azure and Bitnami accounts

• Provision an Azure cloud server with the LAMP packaged by Bitnami

• Validate the cloud server

• Secure the cloud server

1

https://www.apachefriends.org/
https://bitnami.com/stack/lamp
https://mariadb.com/kb/en/mysql-command-line-client/
https://getbootstrap.com/
/downloads/tasks-app-source.zip
/downloads/tasks-app-source.zip
https://bitnami.com/redirect/to?from=%2Fazure&url=http%3A%2F%2Fwww.windowsazure.com%2Fen-us%2Fpricing%2Ffree-trial%2F%3FWT.mc_id%3DAEF469A45
https://bitnami.com/
https://bitnami.com/stack/lamp
https://framework.zend.com/
https://symfony.com/
https://codeigniter.com
https://cakephp.org/
https://www.smarty.net/
https://laravel.com/

• Deploy and test your application on the cloud server

The next sections will walk you through these steps in detail.

Step 1: Register with Microsoft Azure

At the end of this step, you will have signed up for the Microsoft Azure free trial.

Begin by creating an Azure account, by browsing to http://azure.microsoft.com and choosing the "Free Trial"
option for a one month free trial. You will need an existing Microsoft account to log in and sign up for the free
trial; if you don’t have one, you can create one here (remember to keep track of your account username and
password, because you’ll need them in the next step).

Once you’ve signed in, sign up for the Azure free trial by providing some basic personal information and your
mobile phone number. Azure will send a verification code to your mobile number, which you’ll need to enter into
the registration form. Once that’s done, proceed to the next stage by entering your credit card information.

If you’re wondering why you need to provide credit card information for a free trial, or if you’re worried about
being billed for services, relax. By default, Azure trial accounts are configured with a spending limit of $0, which
means that your card will never be billed unless you remove or modify the spending limit. Azure needs your
credit card information for security purposes, to avoid service misuse and to confirm your identity.

2

https://bitnami.com/redirect/to?from=%2Fazure&url=http%3A%2F%2Fwww.windowsazure.com%2Fen-us%2Fpricing%2Ffree-trial%2F%3FWT.mc_id%3DAEF469A45
https://signup.live.com/signup.aspx?lic=1

IMPORTANT
When your spending limit is set to $0, Azure will automatically deactivate your cloud
servers so that you don’t incur any charges if your usage exceeds your free quota.
Read more about the Azure spending limit.

Once your payment information is entered, review Azure’s terms of service, free trial details and privacy
statement, and indicate your agreement by ticking the box. Then, hit the big green "Sign up" button.

The Azure account registration machine will churn away for a minute or so, and you will then be redirected to
your Azure account management page, which allows you to manage your subscriptions, edit your profile and
get support. You should see that your free trial is now active in the subscription list.

Step 2: Register with Bitnami

At the end of this step, you will have created a Bitnami account.

The next step is to create a Bitnami account, so that you can launch a cloud server with LAMP packaged by
Bitnami image. If you have a Google, Microsoft or Github account, you can use your credentials from those
services with Oauth to create your Bitnami account.

If you don’t have accounts with those services (or you don’t want to use them), you can use your email address
and password to create a Bitnami account, as described below:

• Head to the Bitnami sign-up page.

• Enter your name and email address.

• Choose a password.

• Review and agree to the Bitnami terms of service.

Then, use the "Sign up" button to create your account.

3

http://msdn.microsoft.com/en-us/library/azure/dn465781.aspx
https://bitnami.com/account/sign_up

Bitnami will send you an email with a verification link which you’ll need to click or browse to, to activate your
account. This will also sign you in to your Bitnami account.

Step 3: Connect your Azure and Bitnami
Accounts

At the end of this step, your Bitnami Launchpad for Azure will be configured and you will be ready to
provision a cloud server.

The easiest way to set up your Azure cloud server with LAMP packaged by Bitnami is via the Bitnami
Launchpad for Azure, which gives you a simple control panel to provision, start, stop and check status of your
Azure cloud servers. However, to use it, you must first connect your Azure and Bitnami accounts.

To do this:

• Log in to your Bitnami account if you’re not already logged in

• Browse to https://azure.bitnami.com/

• Select the "Sign in with Bitnami" link in the top right corner.

4

https://azure.bitnami.com/
https://azure.bitnami.com/
https://azure.bitnami.com/

The Launchpad will recognize your Bitnami credentials and automatically sign you in.

The next step is to set up an administrative password for the Bitnami Launchpad and connect your Azure
account with your Bitnami account.

Select "Virtual Machines" in the Launchpad menu and - since this is your first time - you’ll be prompted to enter
an administrative password.

The administrative password offers an additional level of protection against misuse: you’ll need to enter it when
performing certain operations, such as creating new Azure server instances. Again, make sure you note it
down for future reference.

Next, you’ll be asked to connect your Azure account to your Bitnami account, by transferring a management
certificate generated by Azure into your Launchpad account. Although this sounds complex, the Launchpad
makes this a simple two-step process.

• Select the "Create a Management Certificate for Microsoft Azure" button. So long as you’re still logged in to
Azure, this will generate a .publishsettings file which you’ll be prompted to download through your browser.

5

• Once the file is downloaded, drag it from your desktop to the Bitnami Launchpad page and then select the
"Create Service" option to upload the management certificate to the Launchpad.

Your Azure and Bitnami accounts will now be connected.

Step 4: Provision an Azure Cloud Server

At the end of this step, your Azure cloud server will be running and you will be able to access it through
your Web browser.

To provision your Azure cloud server:

• Select "Library" in the Launchpad menu

• Look through the list of applications and images available in Bitnami until you find LAMP Stack

• Select it and click "Launch in account".

• Define the region and size for your Azure server. Choose from an "Extra Small" server, which uses shared
virtual cores to an "Extra Large" server, which has 8 dedicated virtual cores, depending on the needs of

6

your application. For more information, refer to Azure’s virtual machines and pricing sheet.

TIP "Extra Small" servers work just fine for most PHP application development tasks.

• Confirm your selection by hitting the "Create Virtual machine" button at the end of the page.

The Bitnami Launchpad will now assign the new server a host name and begin spinning it up. The process
usually takes a few minutes: a status indicator on the page provides a progress update.

Once the cloud server has been provisioned, the status indicator will show that it’s "running", and the host
name specified in the Bitnami Launchpad will become an active link.

At this point, you should be able to browse to the cloud server, either by clicking the link in the Bitnami
Launchpad or entering the cloud server host name directly into your browser’s address bar. You should see a

7

https://azure.microsoft.com/en-us/pricing/details/virtual-machines

welcome page like the one below (just so you know, it’s served up by Apache, which is part of LAMP packaged
by Bitnami).

Step 5: Test PHP and MariaDB

At the end of this step, you will have logged in to your cloud server and verified that PHP, MariaDB and
phpMyAdmin are working correctly.

You can now connect to the cloud server and test PHP to make sure it’s working correctly and has all the
extensions you need. The easiest way to do this is with PuTTY, a free SSH client for Windows and UNIX
platforms.

• Download the PuTTY ZIP archive from its website.

• Extract the contents to a folder on your desktop.

• Double-click the putty.exe file to bring up the PuTTY configuration window.

• Enter the host name of your cloud server into the "Host Name (or IP address)" field, as well as into the
"Saved Sessions" field.

• Click "Save" to save the new session so you can reuse it later.

8

https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://www.chiark.greenend.org.uk/~sgtatham/putty/

• In the "Connection _ SSH _ Tunnels" section, create a secure tunnel for the phpMyAdmin application by
forwarding source port "8888" to destination port "localhost:80".

• Click the "Add" button to add the secure tunnel configuration to the session.

• Go back to the "Session" section and save your changes by clicking the "Save" button.

• Click the "Open" button to open an SSH session to the server.

• PuTTY will first ask you to confirm the server’s host key and add it to the cache. Go ahead and click "Yes"
to this request.

9

• Enter your SSH username and password when prompted. This information is available on the Bitnami
detail page for your cloud server. You should then be logged in to your cloud server.

By default, LAMP packaged by Bitnami includes running Apache and MariaDB servers, and all the packages
that come with the stack are located in the /opt/bitnami directory. Most importantly, there’s also a phpinfo.php
file in the /opt/bitnami/docs directory, which you can copy to the Apache web server root to verify PHP’s
capabilities.

shell> cd /opt/bitnami
shell> cp docs/phpinfo.php apache2/htdocs/

Once the file has been copied, browse to http://[your-cloud-server-hostname]/phpinfo.php and you should see
the output of the phpinfo() command.

With this, you know that your PHP installation is configured and working correctly.

10

You can also check that MariaDB is working: simply launch the MariaDB command-line client by typing 'mysql'
at the shell prompt.

shell> mysql

The client should start up and connect to the local MariaDB server, displaying a welcome message as shown
below.

You should also be able to access phpMyAdmin through the secure SSH tunnel you created, by browsing to
http://127.0.0.1:8888/phpmyadmin.

To log in, use username 'root' and default password 'bitnami'.

In case you’d like to troubleshoot errors or modify the configuration for Apache, PHP or MariaDB - for example,
adjusting the maximum upload file size in PHP or [changing the path to the MariaDB data directory] - here are
the locations for key configuration and log files in LAMP packaged by Bitnami:

Configuration file(s) Log file(s)

Apache /opt/bitnami/apache2/conf/httpd.co
nf

/opt/bitnami/apache2/logs/error_lo
g

PHP /opt/bitnami/php/etc/php.ini -

MariaDB /opt/bitnami/mariadb/conf/my.cnf /opt/bitnami/mariadb/logs/mysqld.l
og

Usually, you’ll need to restart your server(s) for your changes to take effect. LAMP packaged by Bitnami
includes a control script that lets you easily stop, start and restart Apache, MariaDB and PHP. The script is
located at /opt/bitnami/ctlscript.sh. Call it without any arguments to restart all services:

11

http://127.0.0.1:8888/phpmyadmin
https://docs.bitnami.com/aws/apps/ghost/administration/change-data-directory-mariadb/

shell> sudo /opt/bitnami/ctlscript.sh restart

Or use it to restart a specific service only by passing the service name as argument - for example 'mysql':

shell> sudo /opt/bitnami/ctlscript.sh restart mariadb

Step 6: Configure Server Security

At the end of this step, you will have updated the default account passwords and configured key-based
SSH authentication to make your cloud server more secure.

Although this is an optional step, it’s best practice to secure your server by changing default passwords and
configuring SSH key-based access. For example, the default MySQL installation uses 'bitnami' as the root
password, so this should be changed right away, by using the command shown below (replace 'guessme' with
your new password):

shell> mysqladmin -u root password guessme

You can also change the password of the default 'bitnami1' account, as shown below:

shell> passwd

You will be prompted to enter the current password, then a new password.

To further secure the server, it’s a good idea to replace SSH’s password-based authentication with key-based
authentication. This ensures that only users with access to the correct key can log in to the server.

To do this:

• Launch PuTTY’s key generation tool puttygen.exe.

12

• Select "SSH-2 RSA" as the key type.

• Set the number of bits to 2048.

• Click the "Generate" button to start the process of generating a public/private key pair.

• Move your mouse around to generate some randomness for the key.

PuTTY will generate the keys and display the public key, as in the screenshot below.

• Select "Save private key" and select a file name and location for the private key file - in this example,
bitnami.ppk.

• For added security, enter a passphrase. Leave it blank for faster, passphrase-less authentication.

13

• On the cloud server, edit the ~/.ssh/authorized_keys file and copy the public key from the PuTTY key
generator into it. Ensure that the public key is pasted on a single line.

shell> cd ~
shell> vi ~/.ssh/authorized_keys

• Save the ~/.ssh/authorized_keys file. Here’s what the file should look like:

• Log out of the cloud server.

• On your desktop, start PuTTY with the putty.exe file.

• In the PuTTY configuration window, select the session from the "Saved Sessions" list.

• Click "Load" to load the session.

14

• In the "Connection _ SSH _ Auth" section, select the private key file you saved a few steps ago.

• In the "Connection _ Data" section, enter the username into the "Auto-login username" field.

15

• Go back to the "Session" section and save your changes by clicking the "Save" button.

Now, open a new connection to the cloud server by clicking "Open". This time, PuTTY should use the private
key to automatically log you in to the cloud server, without requiring you to enter a password.

Assuming it all worked, the final step is to turn off password-based authentication.

• Edit the /etc/ssh/sshd_config file on the cloud server.

shell> vi /etc/ssh/sshd_config

• Find the line containing 'PasswordAuthentication yes' and change it to 'PasswordAuthentication no'.

16

• Restart the SSH daemon

shell> sudo service ssh restart

At this point, your private SSH key is the only way of gaining access to your cloud server - so keep it safe!

Step 7: Deploy the XAMPP Application to the
Cloud Server

At the end of this step, your PHP/MariaDB application will be running in the cloud.

Your cloud server is now provisioned, secured and has a functional PHP/MariaDB environment. All that’s left is
for you to transfer your application code from your local XAMPP environment to your cloud server and set up
the database.

The easiest way to transfer files to the server is with FTP or SFTP. Although you can use any FTP/SFTP client,
I like FileZilla, a cross-platform, open source and feature-rich client. Download it from the FileZilla website and
install it using the automated installer - it’s a quick process, only requiring you to agree to the license, choose
the components (the default selection is usually fine) and specify the installation directory.

17

https://filezilla-project.org/
https://filezilla-project.org/

Once FileZilla is installed, launch it and you’ll arrive at the main split-screen interface, one side for your local
directories and the other for remote directories.

To connect to the cloud server and deploy your application, follow these steps:

• Use the "Edit _ Settings" command to bring up FileZilla’s configuration settings.

• Within the "Connection _ SFTP" section, use the "Add keyfile" command to select the private key file for
your server. FileZilla will use this private key to log in to the cloud server.

18

• Use the "File _ Site Manager _ New Site" command to bring up the FileZilla Site Manager, where you can
set up a connection to your cloud server.

• Enter your server host name or IP address and user name.

• Select "SFTP" as the protocol and "Normal" as the logon type.

• Use the "Connect" button to connect to the cloud server and begin an SFTP session.

• On the remote server side of the window, change to the /opt/bitnami/apache2/htdocs directory

• On the local server side of the window, change to the directory containing your application code.

• Upload your XAMPP application code to the remote directory by dragging and dropping the files from the
local server to the cloud server (you can back up the original contents of the directory if you wish, by
downloading them first).

19

• Once the files are transferred, log in to the server console using PuTTY.

• Create a database for the application using the MariaDB command-line client (you can use phpMyAdmin if
you prefer a graphical interface). For example, since the application is a to-do list, let’s call the database
'tasks'.

mysql> CREATE DATABASE tasks;

• Follow best practices and create a separate MariaDB user with privileges to access only this database.

mysql> GRANT ALL ON tasks.* TO 'tasks'@'localhost' IDENTIFIED BY 'klio89';

• If required, update database credentials in your application. Then, install the application schema in the new
database (assuming you already uploaded it with the application code). For example, you can use the
following command with the MariaDB command-line client:

shell> mysql -u tasks -D tasks -p < schema/tasks.sql

20

If you’re logged in to phpMyAdmin, you can also import the database schema from your local XAMPP system.
To do this, select the "Import" tab of the phpMyAdmin dashboard, select the file containing the schema, and
click "Go" to have the tables created in your selected database.

You can also learn more about using phpMyAdmin to back up and restore databases.

Browse to your cloud server’s host name and your application should be active. Here are a few screenshots of
the example to-do list application running on the cloud server.

Congratulations! You’ve successfully deployed your XAMPP application in the cloud.

21

https://docs.phpmyadmin.net/en/latest/faq.html#using-phpmyadmin

Understand Azure’s Dashboard and Monitoring
Tools
To help you get the most out of your cloud server, Azure makes a number of administrative and monitoring
tools available. These help you keep track of your application’s performance in the cloud and optimize your
server and software configuration as needed.

To see these tools in action:

• Browse to the Bitnami Launchpad for Azure and sign in if required using your Bitnami account.

• Select the "Virtual Machines" menu item.

• Select your cloud server from the resulting list.

• On the server detail page, click the "Manage on Azure" button. You will be redirected to the Azure
management console.

• Sign in to Azure if required using your existing Microsoft account.

Once you do this, you’ll arrive at the Azure dashboard, which lists all your virtual machines and cloud services.
Select the cloud server you created with the Bitnami Launchpad to arrive at the dashboard, which provides an
overview of CPU usage, disk activity and network traffic over the last hour, 24 hours or 7 days. You’ll notice that
the toolbar below the activity monitor provides controls to restart or shut down the cloud server.

You can also use the Azure dashboard to resize your virtual server. To do this:

• Select the "Configure" tab of the dashboard.

22

https://azure.bitnami.com/

• Select a new "Virtual Machine Size" on the resulting page.

• Click the "Save" command in the toolbar at the bottom of the page.

Azure will resize and restart your cloud server with the new configuration.

You can also define alerts, so that you’re automatically informed if any of the above metrics crosses a particular
threshold. To do this:

• Select the "Monitor" tab of the dashboard.

• Select a metric on the resulting page.

• Click the "Add Rule" command in the toolbar at the bottom of the screen.

• Specify a name for the new alert.

23

• Define the alert threshold for the selected metric, the evaluation window and the email address to be
notified when the alert is triggered.

When the above rule is submitted, Azure will automatically send you an email when your cloud server’s CPU
usage exceeds 65%.

You can also monitor the uptime of your XAMPP application, by configuring an HTTP endpoint that is
automatically checked from up to three different geographical locations. To do this:

• Select the "Configure" tab of your virtual machine dashboard.

• Create a new availability set and give it a name.

NOTE
An availability set is a group of Azure cloud servers, designed to provide redundancy if one
goes down. In the event of a server fault or maintenance event, Azure will use the servers in
the availability set to ensure continuous service. Read more about availability sets.

• Set the application’s index page URL (or any other URL you wish) as a monitoring. endpoint.

• Save your changes.

24

http://azure.microsoft.com/en-us/documentation/articles/virtual-machines-manage-availability/

Azure will restart your cloud server and configure the URL you specified as a monitoring endpoint. This will
also add new metrics for response time and uptime to your list of available metrics, which you can plot in your
dashboard or configure alerts against.

Improve Application Performance
Web application performance problems are hard to debug at the best of times, and more so when your server
is in the cloud and running a pre-packaged stack. The responsiveness of your application at any given moment
depends on numerous factors: server type, network bandwidth, cloud provider load, database load, caching
system in use, application code structure, query structure and various other variables.

IMPORTANT

LAMP packaged by Bitnami already uses the Apache Event MPM and PHP-FPM for
reduced memory usage and an increase in the number of simultaneous requests
that the server can handle (more information). It also comes with the
mod_pagespeed Apache module activated to rewrite pages on the fly and improve
latency.

If you’re finding that your PHP/MariaDB application’s performance is not up to scratch, here are a few general
tips you can consider:

• LAMP packaged by Bitnami includes APCu, a popular PHP bytecode cache. Usually, when a PHP script is
executed, the PHP compiler converts the script to opcodes and then executes the opcodes. APC provides
a framework for opcode caching, thereby speeding up PHP applications without needing any code
changes. Make sure your APC cache has enough memory and a long TTL. Read more about APCu and
how to use APC with PHP and Bitnami.

• LAMP packaged by Bitnami also includes the PHP memcache extension. Memcache is a high-
performance, distributed memory object caching system. Consider using memcache to store frequently-

25

https://httpd.apache.org/docs/2.2/mod/event.html
https://php-fpm.org/
https://developers.google.com/speed/pagespeed/module
https://php.net/manual/en/book.apcu.php
https://php.net/manual/en/book.apcu.php
https://docs.bitnami.com/aws/infrastructure/lamp/configuration/install-modules-php/#apcu
https://php.net/manual/en/memcache.installation.php
https://memcached.org/

accessed fragments of data in memory as arrays, thereby reducing the load on your MariaDB database
server. Read more about memcache in PHP.

• Turn on MariaDB’s slow query log and set MariaDB’s 'long_query_time' variable to a low number. This lets
you track which of your queries are performing inefficiently and adjust them, either structurally or by
applying table indexes as needed, to improve performance. You can use tools like mysqldumpslow or
mysql-slow-query-log-visualizer to parse and analyze the slow query logs generated.

• If your application is database-heavy, you’ll gain performance by giving the MariaDB server more memory.
You may use the MariaDB Optimization and Tuning guides, to identify which server parameters need
tuning, and incrementally make changes to your server’s cache and buffers to improve performance. For
example, if your tables are all MyISAM, disable InnoDB in your my.cnf file to save further memory.

• Unload Apache modules which you don’t need to save memory, and adjust the log level to errors only.

• Minify your JavaScript code, and consider using a CDN for static content like images.

Good luck, and happy coding!

Useful Links
• Microsoft Azure

• Bitnami Launchpad for Azure

• LAMP packaged by Bitnami

• LAMP packaged by Bitnami Documentation

• PuTTY

• FileZilla

• Example Project (.zip)

About the author
Vikram Vaswani is the founder of Melonfire, an open source software consultancy firm, and the author of seven
books on PHP, MySQL and XML development. Read more about him at http://vikram-vaswani.in/.

26

https://php.net/manual/en/book.memcache.php
https://mariadb.com/kb/en/slow-query-log-overview/
https://mariadb.com/kb/en/mysqldumpslow/l
https://code.google.com/p/mysql-slow-query-log-visualizer/
https://mariadb.com/kb/en/optimization-and-tuning/
https://bitnami.com/redirect/to?from=%2Fazure&url=http%3A%2F%2Fwww.windowsazure.com%2Fen-us%2Fpricing%2Ffree-trial%2F%3FWT.mc_id%3DAEF469A45
https://azure.bitnami.com/
https://bitnami.com/stack/lamp
https://docs.bitnami.com/general/infrastructure/lamp
https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://filezilla-project.org/
/downloads/tasks-app-source.zip
http://vikram-vaswani.in/
http://vikram-vaswani.in/

	Host your Application in the Azure Cloud with XAMPP and Bitnami
	Table of Contents
	Introduction
	What You Will Need
	Step 1: Register with Microsoft Azure
	Step 2: Register with Bitnami
	Step 3: Connect your Azure and Bitnami Accounts
	Step 4: Provision an Azure Cloud Server
	Step 5: Test PHP and MariaDB
	Step 6: Configure Server Security
	Step 7: Deploy the XAMPP Application to the Cloud Server
	Understand Azure’s Dashboard and Monitoring Tools
	Improve Application Performance
	Useful Links
	About the author

